Delocalization effects and charge reorganizations induced by repulsive interactions in strongly disordered chains
نویسندگان
چکیده
We study the delocalization effect of a short-range repulsive interaction on the ground state of a finite density of spinless fermions in strongly disordered one dimensional lattices. The density matrix renormalization group method is used to explore the charge density and the sensitivity of the ground state energy with respect to the boundary condition (the persistent current) for a wide range of parameters (carrier density, interaction and disorder). Analytical approaches are developed and allow to understand some mechanisms and limiting conditions. For weak interaction strength, one has a Fermi glass of Anderson localized states, while in the opposite limit of strong interaction, one has a correlated array of charges (Mott insulator). In the two cases, the system is strongly insulating and the ground state energy is essentially invariant under a twist of the boundary conditions. Reducing the interaction strength from large to intermediate values, the quantum melting of the solid array gives rise to a more homogeneous distribution of charges, and the ground state energy changes when the boundary conditions are twisted. In individual chains, this melting occurs by abrupt steps located at sample-dependent values of the interaction where an (avoided) level crossing between the ground state and the first excitation can be observed. Important charge reorganizations take place at the avoided crossings and the persistent currents are strongly enhanced around the corresponding interaction value. These large delocalization effects become smeared and reduced after ensemble averaging. They mainly characterize half filling and strong disorder, but they persist away of this optimal condition. PACS. 72.15.-v Electronic conduction in metals and alloy – 73.20.Dx Electron states in low-dimensional structures – 72.10.Bg General formulation of transport theory – 05.60.Gg Quantum transport
منابع مشابه
Ion-mediated interactions between net-neutral slabs: Weak and strong disorder effects.
We investigate the effective interaction between two randomly charged but otherwise net-neutral, planar dielectric slabs immersed in an asymmetric Coulomb fluid containing a mixture of mobile monovalent and multivalent ions. The presence of charge disorder on the apposed bounding surfaces of the slabs leads to substantial qualitative changes in the way they interact, as compared with the standa...
متن کاملElectrostatic disorder-induced interactions in inhomoge- neous dielectrics
– We investigate the effect of quenched surface charge disorder on electrostatic interactions between two charged surfaces in the presence of dielectric inhomogeneities and added salt. We show that in the linear weak-coupling regime (i.e., by including mean-field and Gaussian-fluctuations contributions), the image-charge effects lead to a non-zero disorderinduced interaction free energy between...
متن کاملExact multi-electronic electron-concentration dependent ground-states for disordered two-dimensional two-band systems in presence of disordered hoppings and finite on-site random interactions
We report exact multielectronic ground-states dependent on electron concentration for quantum mechanical two-dimensional disordered two-band type many body models in the presence of disordered hoppings and disordered repulsive finite Hubbard interactions, in fixed lattice topology considered provided by Bravais lattices. The obtained ground-states loose their eigenfunction character for indepen...
متن کاملCompetition Between Charge-Density Waves and Superconductivity in Striped Systems
Switching on interchain coupling in a system of one-dimensional strongly interacting chains often leads to an ordered state. Quite generally, there is a competition between an insulating charge-density-wave and a superconducting state. In the case of repulsive interactions, charge-density wave usually wins over superconductivity. Here, we show that a suitable modulation in the form of a period ...
متن کاملNon-Gaussian spatial correlations dramatically weaken localization.
We perform variational studies of the interaction-localization problem to describe the interaction-induced renormalizations of the effective (screened) random potential seen by quasiparticles. Here we present results of careful finite-size scaling studies for the conductance of disordered Hubbard chains at half-filling and zero temperature. While our results indicate that quasiparticle wave fun...
متن کامل